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DIPOLE FIELD OF THE EARTH

By Jou~x R. Sererrer and Buniasy R. Briaas

SUMMARY

The interaction between a neutral stream of ionized
solar corpuscles and a three-dimensional magnetic
dipole representing the geomagnetic fueld s tnresti-
gated. It is assumed that the stream i confined to
the erterior and the magnetic field to the interior of a
hollow, the boundary of which is defined by a thin
current sheath.  An approrimate method of solution
is applied, and results are presented for the coordi-
nates of the trace of the boundary of the kollow in the
meridian plane containing the sun-earth line and the
dipole azis for several relative orientations. Results
are also presented for the trace in the equatorial plane
Jor the case in which the dipole aris is normal to the
sun-earth line.  The corresponding problem in two
dimensions is also considered, and it is shown that
the analogous approrimate results are in good agree-
ment with the results indicated by an cxact solution
of the same basic equations.

INTRODUCTION

The present paper is concerned with the study
of the form of the stationary hollow carved out of
an extremely rarefied neutral stream of jonized
particles flowing at hypersonic speed past the
field of a magnetic dipole. Interest in this prob-
lem derives froni a long series of investigations by
Chapman, Ferraro, and others (sce refs. 1 and 2
for a résumé) undertaken to explain the connection
between solar flares and geomagnetic storms.
The broad features that have emerged from these
studies and from numerous and diverse observa-
tions are that the magnetic variations character-
istic of geomagnetic storms are the result of inter-

action between the permanent magnetie field of
the earth and streams of neutral ionized gas ejected
from the sun. The dimensions of the streams arve
large compared with the dimensions of the earth,
and the gas of which the streams are composed
consists mainly of protons and clectrons in very
nearly equal numbers.  The speed of the particles
is usually inferred to be of the order of 1000 km/see
from the time lag of about one day between the
oceurrence of a solar flare and the sudden onset of
a geomagnetic storm.  The number density of the
protons is frequently quoted to be of the order of
about 10/cm?®, but is more variable than the
velocity and apparently may be as small as 1/em?
or as lurge as 100/em® or 1000/cm?®.

More recent analysis of the properties and
hehavior of comet tails has led Biermann to
advance the idea that there are not only diserete
streams of particles ejected [rom the sun, but also
a general radial outflowing of ionized hyvdrogen
from all parts of the sun at all times. This flow
has been termed the solar wind and the study of
its properties has been the subject of an extensive
series of theoretical investigations by Parker and
others (sce refs. 3 and 4 for a recent account of
this work). These studies together with further
observational evidence have culminated in the
conclusions that the particles constituting the
solar wind are mainly protons and electrons in
equal number, and that they move outward from
the sun as the inevitable hydrodynamic conse-
quence of the expansion of the solar corona into
interplanctary space.  Parker states in reference
4 that at solar minimum, the velocity of expansion
may be only 300 km/see and the number density

1



2 TECHNICAL REPORT R -12(

as low as 20/em® at the orbit of the earth. The
quiet-day solar wind during the vears ol solar
activity is more intense and Parker goes on to
suggest that the velocity und number density may
exceed 500 km/sec and 100/em® at such times.
The close similarity between the properties of
the solar wind and the corpuscular-streams asso-
ciated with geomagnetic storms is obvieus. It
follows that many of the phenomena associated
with the interaction of the solar wind and the
geomagnetic field are essentinlly the same as
those associated with the steady state established
within a few minutes after the sudden commence-
ment of a1 geomagnetic storm when the earth
becomes fully immersed in the solar corpuscular
strenm. It has been suggested by Zhigulev and
Romishevskii  (rel. 5), Dungey  (ref. 6), and
Obayashi and Hakura (ref. 7) that a closely
related  situation  also even in the
absence of the solar wind or corpuscular streams
as a result of the earth’s motion in its orbit
[t is not certain,
phenomena  are
analogous in all details.  The reason is that the
orbital velocity ol the earth is an order of magni-
tude smaller than the velocitios quoted above for
the interplanetary  gas flows, and the effeets
resulting from the random motion of the particles,
which are customarily neglected in the study of
these problems, would be expected to be relatively

oceurs

through an ionized medium.

however, that the assocuted

greater,

Although the fundamental concepts and equa-
tions governing the interaction between a neutral
stream of jonized solar corpuscles and a three-
dimensional dipole  representing the
permanent geomagnetic field have been established
for many vears, the solution of the resulting
problem has proved to be a difficult task.  Most
investigations of this problem have involved a
reduction in the number of dimensions, but
Beard has recently  presented an analysis in
reference 8 in which the Tull three-dimensional
character of the problem is retained throughout.
Simplification is achieved by relinquishing one of
the boundary conditions and replacing it by an

magnetic

approximate relation that is exaet for the related
one-dimensional flow.  In this way, Beard is
enabled to derive a rather lengthy nonlinear
partial differential equation for the coordinates of
the surface bounding the hollow. He then pro-
ceeds to determine the solution in certain regions
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where marked simplifieation oceurs by reason of
symmetry.  Results are thus given for the coordi-
nates of the surface in the equatorial plane, and
also in the vieinity of the meridian plane con-
taining the dipole axis and the velocity vector of
the undisturbed corpuseular stream for the special
case in which these two directions are perpendicu-
lar.

Examination of the results for the meridian
plane reveals, however, that they do not all satisly
the governing differential equation developed in
the main body of the analysis.  The principal
steps of Beard's analysis are therefore reviewed
i the present paper preliminary to the presenta-
tion of the new results.  Ferraro has, in addition,
presented some comments in reference 9 and sug-
gested that it would be better, and no more
dificult, to use a slightly different approximate
relation. This suggestion has accordingly  been
meorporated into the present analysis, but it is
simple matter to recover the equations of Beard
from the equations given herein, if desired.

The prineipal contribution of the present in-
vestigation is, however, the determination of the
trace of the boundary of the hollow in the meridian
plane containing the dipole axis and the veloeity
vector of the incident stream for several eases in
which these two directions are not perpendicular.

Since two-dimensional models have plaved an
important role in many previous discussions of the
present and related geophysieal problems, the
equations for the corresponding two-dimensional
problem are also introduced and the approximate
solution is presented. It is found that the form
of the hollow is similar in most, but not all re-
speets, to that found for the three-dimensional
model.  An indication of the quality of the results
to be expected from the approximate solutions is
provided by comparison of the approximate re-
sults obtained for the form of the hollow with the
exact results for the two-dimensional model given
by Zhigulev and Romishevskii (ref. 3), Hurley
(rel. 10}, and Dungey (ref 63, Tt is shown that
the form of the boundary indicated by the approxi-
mate solution is in good agreement with that in-
dietated by the exaet solution.

FUNDAMENTAL ASSUMPTIONS AND EQUATIONS

The fundamental assumptions and equations of
the present analysis are based on the resulis of
previous investigations of Beard (ref. 8), Ferraro
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(refs. 9 and 11), and Dungey (ref. 12), which are,
in turn based on a long series of investigations by
Chapman and Ferraro, and others that have heen
summarized recently in references 1 and 2. It is
assumed in these and related studies that a steady
neutral ionized corpuscular stream flows radially
outward from the sun. The presence of the geo-
magnetic field has the effect of earving a hollow
out of the stream. The hollow is bounded by a
thin current sheath, which has the property of
confining the corpuscular stream to the exterior,
and the geomagnetie field to the interior of the
hollow.

Dungey (ref. 12) has investigated in detail the
conditions that prevail, for the steady state, at
the surfuce of the hollow where the acradynamie
pressure of the deflected stream is balanced by the
magnetic and eleetrieal forees on the charged
particles. It is found that the particles of the
corpuscular stream move in straight lines up to
the boundary of the hollow where they are, in
effect, specularly reflected and returned to the
strenm with a direction of motion different from
that which they possessed in the inctdent strean,
In so doing they exert an acrodynamic pressure
2mnrzeosty on any element of the boundary for
which cos ¢ <0. The quantities m, n, and r
represent the mass, number density, and veloeity
of the positive ions in the undisturbed ineident
stream and ¥ represents the angle which the diree-
tion of the undisturbed motion of the particles
makes with the outward normal to the surface ad
the point of impact.  An element of the surface
that fails to comply with the condition that cos

z

, Element of boundory
of hollow, F(r,8, ¢}
= constant

Q/ﬁs, outward normol te

boundory of hollow

Mp

Frovre 1. View of coordinate system.

¥ <0 is shielded from the stream and experiences
no aerodyvnamic pressure.

Dungey proceeds to show that the acrodynamic
pressure is balanced by the magnetie pressure
1287 where I, 1s the total (tangential) magnetie
field at the surface of the hollow.
tions lead to the following relation which must he
satisfied at the boundary of the hollow:

These considera-

T2 87 =2mni? costy (1)

With m, », and ¢ expressed in c.gs, units, 1, is
expressed in gauss.

The total magnetie field Hin the interior of the
hollow is the sum of the permanent magnetie field
H, and the induced magnetie field H due to the
currents in the stream surface,  This field depends
on the shape of the hollow, and its properties are
deseribed by the solution of the magnetic field
cquations

div H=0, curl H=0 (2)

which satisfies the boundary conditions that the
normal component of H vanish and the tangential
component of H be given by equation (1) at the
surface of the hollow.
the solution possess the appropriate singularities
in the interior of the hollow that are required to
represent the magnetic field of the earth and any

[t is also necessary that

exterior current systems that may be present.
These will be considered to be represented by a
single magnetic dipole.  Thus, H, for the three-
dimensional case is given by

H, = —(M,ir) (8 sin 9 - 2 cos ) (3)

where the coordinate system is fixed with respect
to the dipole as illustrated in figure 1, 6 and r are
unit veetors in the direction of increasing 6 and »,
and the magnetic moment of the dipole is given
by M,=a*ll,. where a represents the radius of
the carth and 71, represents the intensity of the
geonuagnetic field at the magnetic equator. The
corresponding expression for the permanent mag-
netie field in the two-dimensional case is

H,,=—(M,,/r*) (é sin 8 -1 Foeos ) (4)

where the magnetic moment of the two-dimen-
sional dipole is given by M, =« 1, and the

subseript 2 is used where necessury to denote
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the values of the indieated quantities that are
with the two-dintensional  problem.

It is a property of the above equations that H
wnnot vanish over any region of Hnite extent in
the interior of the hollow. [t follows that the
boundary of the hollow must be of such form that
cos ¥ <O evervwhere with zero values oceurring
This condition

associnted

only at isolated points or lines.
together with the above equations suflices to
specify completely the form for the boundary of
the hollow and the properties of the magnetie
field contained therein,

Comparison of the mathematical formulation
of the problem summarized above with that
derived in an earlier detailed study by Ferraro
given in reference 11 reveals one difference. Teas
that Ferraro arrives at the following expression in
Mace of equation (1)

T Ei8T e’ cos® 6))
This result indicates that only hall the acrody-

pressure 1s balanced by the magnetic
Ferraro states that this tmplies that

nanie
pressure,
the other half i balanced by a retarding elee-
trostatic field with a slight  charge
separation in the viemity of the boundary. Sueh
A separntion oceurs as o consequence of the laet

associaled

that the more massive ions penetrate slightly
deeper into the boundary than the electrons.

The resultant effect of using equation (5) rather
than (1) 1s that all linear dimensions of the hollow
are larger by a factor of 2V for the three-di-
mensional ease and 2Y* for the two-dimensional
ease. Further examination ol the hterature re-
veals that equations (1) and (5) have both been
used in recent studies, Equation (1) has been
used, for instance, in references 5, 8, 10, and 12
by Zhigulev and Romishevskii, Beard, Hurley,
On the other hand,
recent studies by Ferearo (refs. 2 and 9), us well
as those of Chapman (ref. 1), Obavashi and
Hakura (ref. 7), Piddington (ref. 13), and the
present authors (rel. 14) are all based on equation
(5.

The choice of cquation (1) or (3) to represent
the conditions at the boundary of the geomagnetice

and Dungev, respeetively.

field is obviously a matter that requires clarifica-
tion. It is fortunate, therefore, that the two
prineipal derivations of (hese equations, namely
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those given by Dungey in reference 12 and by
Ferraro in reference 11, are based on essentially
the same fundamental concepts and equations.
The analysis given by Ferraro is much longer,
however, because 1t includes consideration of the
unsteady case, whereas that given by Dungey is
confined 1o the steady-state case. It appears,
in Tact, that the slightly different objectives in
the two dertvations account for the difference in
the final result.

Thus, Ferraro is concerned prineipally with the
first phase of a geomagnetic storm during which
1 i considered that o neutral jonized cloud of
linite extent advances toward the earth and com-
presses the magnetie field. 1t s assumed, in the
analysis, that the density of the stream just inside
the leading face of the eloud is not inereased
appreciably by the presence of overtaken or re-
bounding particles. The actual inerease is not
caleulated, but it is concluded on the basis of
examination of conditions that prevail in the very
carly stages of the interaction when the eloud is
very distant from the carth that the inerease is
indeed small. Tt 1s then shown that these argu-
ments lead to equation (5). This result is then
applied in the discussion of not only the initial
phase of the unsteady ease but also the final
steady=state case in which the partieles are, in
effeet, specularty reflected from the boundary of
the geomagnetic field.

Dungey concentrates, on the other hand, on an
analvsis of the conditions that prevail when the
awrth is deeply mmmersed ina neutreal ionized
cloud and a steady state hus been established.
Consideration 18 given to the increase in the
density ol the stream just outside the boundary
of the magnetie field due to the presence of re-
bounding particles,  Since  the
hounding particles s just equal, in the steady
state, to the number of particles in the ineident

number of  re-

stream at the same point, the density of the
stream in the viemity of the boundary is just
twice that associnted with the incident stream
alone.  These considerations, when applied to the
imhomogencous Maxwell's equations, Tead to the
factor 8 in the right-hand members of equation
(8.7) and 8.8) of Dungev's analysis compared
with the factor 4 in the right-hand members of
equations (16) and 21) of Ferraro’s analysis, and
account ultimately for the factor 2 in the right-
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hand member of equation (1) compared with unity
in equation (3).  The final conclusion is that the
relation given by equation (1) is the appropriate
condition to apply at the boundary ol the geomag-
netie field for analysis of steady-state problems.
Ferraro has indieated in private correspondence
with the authors that he with  this
conelusion.

CONers

Attention ix drawn to the fuct that Dungey
appears to use equation (5) rather than (1) in his
more recent work given in reference 6. There is
a slight ambiguity in the definition of the number
density n, however, and it appears upon closer
examination that this quantity refers to the sun
of the incident and reflected jons rather than the
number of fons in the incident strewm alone, as
With this interpretation,
the relation emploved in reference 6 is equivalent
(o equation (1) rather than (5).

in his previous work.

THREE-DIMENSIONAL PROBLEM

DERIVATION OF AN APPROXIMATE DIFFERENTIAL EQUA
TION FOR THE COORDINATES OF THE BOUNDARY OF THE
HOLLOW

An exact solution for the form of the boundary
of the hollow for the two-dimensional ease has been
given recently by Zhigulev and Romishevskit (ref.
5), Hurley (ref. 10), and Dungey (ref. 6), but 1t
wats necessary for Beard to resort to approximate
mothods in reference $ to obtain comparable re-
sults for the physically realistie three-dintensional
case. The essential coneept that leads to the
simplification achieved by Beard is that the con-
dition that the normal component of H vanish at
the boundary ol the hollow is relinquished and re-
placed by the approximate condition that 11, 1s
equal to twice the tangential component ol the
permanent magnetic field H, at the same point.

Ferraro has subsequently presented some com-
ments in reference 9 regarding this approximation
and suggested that it would be better to replace
the factor 2 by 2f where fis a constant, the value
for which is to be determined at the end of the
caleulation by matehing conditions at some par-
ticularly significant point.  He presents a simple
ustrative two-dimensional example involving
flow past a current-bearing wire and shows that a
reasonable procedure for the estimation of f leads
to the value 0,68 for that particular case. [t will

he seen subsequently herein that the correspond-
ing value for f increases to about 0.913 when flow
past a two-dimensional dipole is considered. Tt
will also been seen that introduction of a constant
factor finto the analysis affects only the size and
not the form of the hollow. The effeet is, more-
over, of only moderate importance in the three-
dimensional ease sinee the linear dimensions of the
hollow are proportional to the cube root of f, and
it is anticipated that values for f will be only
slightly different from unity.

The mathematieal implementation of the above
considerations requires the determination of the
appropriate expression for the component of the
permatent magnetic field that lies in the surface
of the hollow.
for omission of sign, by Beard and the result
having positive sense in the direction of inereasing

This has been accomplished, exeept

8 is given by

B H, = — (b Mp/ry|sin 6-+(2/r) (0r/08) cos 8] (6)

where
b =1+ (1/2) (Or/0m)2| =172 (7)

and ;;fk(.;aXﬁg) is © unit veetor in the direction
of the line of interseetion of the surfauce of the
hollow and a plane ¢=const, N, is a unit veetor
in the direction of the outward normal to the
surface, & is a normalizing factor, and the quantities
+ and 8 now refer to the coordinates of the surface
of the hollow. Equation (6), together with the
assumption that

=27 -H, (8)

suffices to provide the relation necessary to
expross the left-hand side of equation (1) in terms
of the coordinates of the surface of the hollow and
the dipole moment of the permanent magnetie
field.

[t is also necessary to determine the appropriate
expression for the right-hand side of equation (1)
in terms of the coordinates of the boundary of
the hollow. The essential part of this term is
the quantity cos ¢, which Beard has shown can
be written as follows in terms of the equation
F(r.0, ¢)=—comst defining the boundary, and the
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angle N between the diveetion of the ineident
stream and the normal to the axis of the dipole.

oF . . .
COS =11, V==—q [3,: (s ¢ sin dcos A—cosdsin A)

—|—,l_— ?)0 {(sIn @ cos 8 cos A+sin @ sin )
1 oF

28 bos g cos 9

rsmoa‘pu)s«:(m )\] (M

where

IFN\2 1 /OF\2 1 QFNET 12
u;[( or ) + 2 ( o8 ) RN ,,( 0 )] (10)

and
. oF or oF
: : "~ == 11
ld F Y dr4 50 d6+ o dep==0) ()
Combination of equations (1) and (6) through

(11} together  with  the  dimensionless
=
p=riry, where

radius

(12)

‘“7( 4,20} ‘)"“"jﬂ:" ( 4/, F ~)”°
L6 mene?, 16 m
leads to the following differential equation for the
radial coordinate p of the boundary of the hollow
expressed as a function of the angular coordinates
f and ¢

5

b’ 2 0p A
b O ((150)

e (sin -+
o

=qa’ I:(sin @ SIN G cos A—cos 6 sin )

1 . . .
— % (s @ o8 @ cos N+Esin 8 sin N)
o O
I 0o ‘ ‘
—p sihé();v(m(p(()h A:, (13)

i which the nermalizing factor o is defined by
@ =14 (1/p2)(Dp/06Y+(1/p? sin6)(0p/d0)?| -2 (14)

and 6" is defined by the relation given in equation
{7) with p written in place of ». It follows from
the dimensionless character of this equation that
variations in the density and velocity of the
undisturbed corpuscular stream, and also in the
value selected for the factor £ affect the size but not
the shape of the hollow. These quantities enter

only into the definition of ro, which will be shown
in the next seetion to represent the distance of
the apex of the hollow from the dipole singularity
for the special ease in which X is zero.

The right-hand side of equation (13) is equal to
—cos Y and is therefore positive evervwhere on the
surface of the hollow. The sign of the quantity
within the parentheses in the left-hand side may
be positive or negative, however, depending upon
whether the component of the permanent magnetic
tield that lies in the surface of the hollow is oriented
in the general direction of decreasing or increasing
8. Tt is evident that both cuses oceur in the de-
sired solution.

SOLUTION FOR MERIDIAN PLANE CONTAINING DIPOLE AXIS
AND SUN-EARTH LINE

The solution of equation (13) appears to be a
complex problem, but great simplification occeurs
if attention is confined to the determination of the
trace of the boundary of the hollow in the meridian
plane containing the dipole axis and the sun-earth
line, that is, the plane along which ¢=— —x/2.
Along (his plane 010 vanishes by reason of
symmetry and equation (13) reduces 1o

-+ pl:, (xsin 9—}—; :jg cos 0);sin g cos A sin ( i:;)

)

. 1 .
—¢0s 6 31n )\—p :53 [('()s 6 cos A sln( =+

oy

+sin 4sin A (19

L—

or, solving for dp/d8, 1o

/
;/—g:(p tan @)
E‘[ms)\sin(,—hm'?,)~('nl§ sin A1) a6)
pfleos A sin{+7/2) +tan g sin MiZ}

where the sense of the plus and minus signs has
been retained to be the same as in equation (13)
by writing sin (£#/2) in the right-hand members.
This result agrees with that given by Beard for
A=0 for ep==/2. It differs, however, in the
overall sign of the right-hand side from the
corresponding result indicated by Beard's equation
(36) for the special case i which A=0, o= —x/2,
and p<2'% in the notation of the present paper.
It is apparent that equations (15) and (16) have
two families of solutions for any given N, depending
upon the choice of the upper or lower signs. It is
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convenient for the discussion of the solutions to

drop the consistent use of the plus and minus

sign employed to this point and consider the two

rearranged families of solutions associated with

the following equation equivalent to equation (16):
p % sin [f—Nsin (£ 7/2)|F s 6

d6 P o cos [B—Xsin (£m/2)|£2 cos 0 7)

The solutions arve given by

. \ 1 -
p COS [:0*}\ sm( 17;)]? yeos =K (18)
2 p

where A is an arbitrary constant of integration.
The above equations apply for both positive and
negative values for X, but it is convenient to
restriet attention in the remainder of the discussion
to positive A
negative values for X ean be obtained readily by

The corresponding  results for

svmmetry from the results for an equal positive
angle.

The evaluation of K cannot be achieved directly
since there is no point on the boundary for which
the coordinates p and 6 are known from a priori
considerations.  Examination of the properties of
the integral curves defined by equation (18)
discloses, however, that only one of the many
alternative solutions satisfies the condition that
the hollow extends a finite distance from the earth
in the direetion of the sun, and that the lateral
dimensions of the hollow inerease steadily with
distance  downstream  from  the
cos ¢ <0 at all points.  This statement is illus-
trated most readily for the simplified form of
equation (18) that results for X=-0, and that case
will he considered first,

Results for A=0. The
equation (18) reduee for the case of A—0 to

apex so  that

solutions given by

z Kp*
_(‘:::If;p 08 == P

- (1)
0 pt T (

Plots of the integral curves are shown in figure 2
for several values for K. 1t should be observed
that of all the integral curves, only the one shown
on part (1) which describes the unit ecircle

p=1 (20)
interseets the sun-carth line at a distance from the
origin that is neither zero nor infinite.  This

solution, which is obtained from equation (19)

GORTOY 62 - 2

by using the minus sigh and equating A to zero,
is, therefore, the only one that can represent the
form of the hollow in the vieinity of the apex.
It is evident, however, that this curve eannot
represent the form of the hollow for ¢=—=72
since it turns away from the direetion of the
corpuscular stream over the pole and fails 1o
satisfy the condition that cos ¢ <0.

An interesting development enters at this point
since inspection of the integral curves shown in
part (b) of figure 2 reveals that the only other
integral curve that passes through the point p— 1
over the pole also fails to satisly the condition that
cos ¢ <0.  Further inspection of the two sets of
integral curves reveals, however, that there is one,
and only one, integral curve that ean be joined to
the upper hall of the unit cirele at some point in
in the quadrant in which o= /2, and that extends
to infinity in the downstream direetion with
cos ¢ <0 at all points. 1t ix the integral curve
shown on part (b} of figure 2 Tor K=3/2%* = 1.800,
that is, that defined by

* 3 B

p
. =1.800 "
pti-1 ot

) 3
(=peost= .5

=

(21

The two curves meet at the point on the unit eirele

having an angular coordinate 8, given by

B cos”! ( : ) (2 = _l{ radian=19.1° (22}

These two curves together with a third curve
joined to the lower half of the unit cirele in a
corresponding manner determine the trace of the
boundary of the hollow in the meridian plane con-
taining the sun-carth line amd the dipole axis for
the case in which these two directions are perpen-
dicular. A plot of the result is shown in figure 3.

[t is important to observe that the curves se-
lected to define the boundary of the hollow are
portions of the integral curves shown in figure 2
that possess the property of crossing.  Points at
which the integral curves cross are denoted as
singular points, and are determined by the condi-
tion that the numerator and denominator of the
vight-lund member of equation (17) vanish simul-
tancously.  Although the positions of the singular
points are different for X=0, it will be seen in the
next section that the integral curves associated
with the singular points continue to play an
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p cos &

psiné

(al peos @ =Kp¥(pt 1)

(h) peoxd - Kpd(pP | 1)

Fiaure 20 Integral eurves defined by equation (1493,

analogous role in the determination of the solu-
tion, although a modification enters when A exceeds
a certain value.

The points at which the front and rear portions
of the boundary join are also of particular signifi-
canee. The segments of the boundary on opposite
sides of these points arise mathematically from
solutions ol equation (17) with alternate choice
of upper and lower signs. Physically, this situa-
tion indicates, considering the relation hetween
the vole of the signs in equations (15) and (17,
that the mugnetic field lines, and henee also the
currents in the current sheath, are directed in
opposite directions at points on the boundary on
the two sides of these points. These points thus
correspond to the neutral points at which the
magnetie lines defining the boundary of the hol-
low meet, turn abruptly, and extend to the earth.
The intersection of these lines and the ecarth’s
surface defines a pairv of isolated points in the
vieinity of the geomagnetic poles through which
pass all the field lines that lie in and define the
boundary of the hollow. These points are of
special significance beeause they define the geo-

graphical areas into which charged particles
initially trapped in the vicinity of the hollow e¢an
precipitate.

Animportant property ol the boundary at the
neutral points is lost in the present solutions as
aconsequence of the introduction of the approxi-
mation that /1, is equal to 2f times the tangential
component  of  the  permanent field.
[tis that cos ¢ must vanish at the neutral points.
That this condition must apply follows [rom
consideration of equation (1) together with the
fact that exact solutions of equation (2) and the
stated boundary conditions must indicate zero

magnetic

field strength at a point of bifureation of field
lines such as occurs at a neutral point.  The
inability of the present results 1o display  this
property clearly represents at least a local Mailure
of the approxiimation. It is anticipated, on the
basis o comparisons of exact and approximate
solutions of the corresponding two-dimensional
problem shown subsequently  herein, that the
effects of this failure of the approximute solutions
are not global in character, but are confined es-
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r___pS'in9=Cb

3
pcos - 2273 Upper singulor

point

- b - Upper neutral

point
p=l

8., =1/3r0d

Front singular
point

~Lower neutral
point

Lower singular
pownt

e 2 0
psin8

Fraerk 3. Form of the boundary of the hollow in the
meridian plane containing the dipole axis and the sun-
carth line; X =0,

sentially  to small regions in the immediate

vicinity of the neutral points.

It is evident from the foregoing results that the
form of the hollow is independent of the values
for the velocity » and number density » ol the
corpuscular stream, but that the size depends on
these quantities through the parameter 7, defined
by equation (12, The relation between these
quantities is ilustrated in figure 4 for two repre-
sentative values lfor £, namely 1 and 3/4. ('on-
siderable uncertainty exists at the present time
in the selection of appropriate values for » and
. but values frequently quoted are in the range
frot 300 to 1500 km/see for o, and 1 to 100 or
more for 1. A representative set of values for
oo, andd foare 500 kmyisee, 14,
it can be seen from figures 3 and 4 that the min-

and 1, for which
imum  distance to the boundary is about 7.6
carth radii. A plot of the upper half of the
boundary of the hollow is shown for this case in
figure 5.

Also shown in figure 5 are the corresponding
The
two results agree over the eireular portion of the
boundary nearest the sun, but not over the portion
of the boundary extending from infinity on the
night side to a colatitude of 19.1° on the day side.

results indieated by Beard in rveference S

i
i
|

Beard has informed the present authors privately
that these differences result from the fact that the
present authors base their analysis on the approxi-
mation given by equation (8) at all points on the
boundary whereas he uses another approximation
in the vieinity of the points over the poles.
Results for arbitrary \.—'The evaluation of
the integration constant A to be nsed in equation
(18) to determine the boundary of the hollow
for arbitrary A requires consideration ol the
coordinates pe and 8 of the singular points of
equation (17). They are determined by equating
the numerator and denominator ol the right-hand
member of equation (17) to zero and solving the
{wo resulting algebraie equations simultaneously.
This procedure leads directly to the relation
(2:3)

tan 6+ 2 (an [Bs— X sin (L 7/2)] =0

earth radn

s

.
I

Q ,0
ol
100 500 1000
v, km/ sec

Fraurre 4. - Values for 7, for various veloeities and number

denxities of the corpuscular stream.
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15 T T T

_-Present result

S . ]
210~  Beard [ISGO]"
=
5
LY
£y
w
S 5k _<
«
v =500 km /sec
n=10 protons/cm3
=1 M,
0 ; L s
15 10 5 5 [e]

7 sin 8, eorth radu
Fraere 5. Comparison of present results and those given
by Beard in reference 8 for the trace of the bonnduary
of the hollow in the meridian plane containing the dipole
axis and the sun-earth line: X =0, » - 500 kmisee, n=10
protonsfcm?, and j-- 1.

which ean be solved to vield the following expres-
sion for the angular coordinates of the singular

points:

fi[mt ,\sin( ‘f:;)]( 1 ;\,““J‘l : ;lm]'“',\)

tanéf.

The wssoctated expression for the radial coordi-
nates of the singular points follows immedintely

and s
1:3

1 ‘ -
;)N*”L)( T eos A+ 9—s1m° A )] (25)

with ithe convention regarding the use ol the upper
and lower signs in equations (24) and (25) re-
nmaining the same as for equations (17) and (18),
There are thus iwo singulavities in the front half
plane for which ¢— /2 and two in the rear hall
plane lor which ¢ = —7/2.

It 1= of mnterest to examine the approximate
expressions for the coordinaies that are obtained
for small X, even though the exact expressions are
used in the ealeulation of the numerieal results to
be presented subsequently herein. They are as
follows for the two singularities situated in the
front half plane:

™A N .
O, ~‘2+:§»‘ pA<l’<’~“~l+1§ (26)
and
2N ‘ N
== ' 2 — 27
Boo = pse=2( m) (27)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

The subscripis F and {7 refer to the singularities
associated with the front and upper rear portions
of the boundary, respeetively.  The corresponding
expressions for the remaining singularities situated
in the rear hadf plane are

Oy, ~m__"~ BPSEIE] _ N S

L =T 3; Py, =2 (l 18) (2?\)
and

T A A? .

Osp ™ 27y ps’f%1+18 (29)

The subseript L refers (o the singularity associated
with the lower rear portion of the boundary
and the subseript 2 vefers to a singularity  that
has physieal meaning only if the direction of the
incident stream is reversed.

The values for K associated with the integral
curves that pass through the singular points can
be determined [rom the general solution given by
equation (18) upon substitution of 8¢ and pg lor
6 and p, thus

. . 1
K—=py cox I:GS—A sln( 17;)] F 08 8 (30)
Ps

A somewhat simpler relation that does not
explicitly involve X can be obtained by combina-
tion with the equation obtained by equating the
denominator of equation (17) to zero, and intro-
ducing a similar substitution for 4 and p. The
wlues for Ky for
the three singular points of interest are

resulting expressions for the

3 cos by, 3 cos b,

’ SpE .

Ko =— 3 2
P‘s'l, P,\'(,

}u

A hst of values for 6, pg, and Ky for vurious M is
given in table I. The values for 4, and 1 are
given in degrees,

Further discussion of the solution is facilitated
by inspection of the two sets of integral curves
defined by equation (18} shown in figure 6 for
the special ease in which X is 30°. The curves
associated with the upper signs of equation (18)
are shown in part o), and those associated with
the lower signs are in part (b).  The locations of
the four singular points are indieated on the
curves and their significance as points where the
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psin@

. 1 .
{a) p cos [0 A .\'m( 4 g):l—-,, cos =K
Z, p-

Frovre 6. Integral eurves defined by equation (18)5 A~ 30°.

integral curves cross is apparent. The  line
described by equating 8 to s, and b, hasadditional
significance sinee all the integral curves, except
those shown on figure 6(b) that pass through
the upper and lower singular points, are parallel
to the direction of the corpusculur stream at the
point where they intersect this line. This result
can be established analvtically from consider-
ation of equations (17) and  (18) together with
the following relation, which is equavalent to
cos y=10,

Iy cos 18—\ st +ri2 .
dlp cos [§—Nsin (£x/2)]} -0 (32)
p

A dashed line indicating the locus of the points
defined by =65, and 6="6s, is thereflore included
in both parts of ficure 6.

The seleetion of the appropriate integral curves
to represent the boundary of the hollow proceeds
in a manner that is completely analogous to that
described in the preceding section for the case
in which A=0. Thus, of all the integral curves,
only the one shown on part (a) that passes

p sind

th} p cos [0 N sin( | 7‘;)]%—1 cos @
L2 p*

=

through the [ront singular point and has the
value Ky, for K can be used to represent the
boundary of the hollow in the vieinity of the apex.
It is evident, however, that this curve cannot
represent the form of the entire hollow since it
furns away from the direction of the corpuscular
stream and fails to satisfv the condition that
cos ¢ <0 at stations farther from the sun than the
Jine defined by §=465,, and §=65,.  The remainder
of the boundary must therefore be constructed
from portions of the integral curves shown on
figure 6(b).  Examination ol these results reveals,
however, that the integral curves which ean be
joined at the points where cos =0 to the curve
deseribing the forepart of the hollow neither
extend to infinity in the downstream direction
nor satisly the condition that cos <0 in the
region of interest.  Further examination reveals
that there is one and only one pair of integral
curves that satisfies these conditions and that
can he joined to the curve representing the forepart
of the hollow anvwhere upstream of the points

at which cos ¢=0. It is the pair of integral
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3 ' ' T ’ ' i 1 - 1 i i T 1 |

pcos8

-l oe Neutral point O ® Neutral point 2

O ® Neutra! point O @ Neutral point

p cos 8

psind o sinf

Fieure 7 -Form of the boundary of the hollow in the meridian plune containiag the dipole axis and the sun-earth line;
0° <A <350

curves having values for K of Ko and K, that in the meridian plane containing the dipole axis
pass throngh the upper and lower singular points. and the sun-earth line for the case in which A:=30°.
These three segments of integral curves thus The procedure deseribed above has been used

define the trace of the boundary of the hollow to caleulate the form of the boundary of the
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hollow for several values for X between 0° and
359 The numerical values for p are lsted as o
function of 6 for intervals of 5° in 6 and X\ in
table 11, and illustrated graphically in figure 7.
The coordinates of the upper and lower neutral
points at which the front and rear portions of
the boundary join are also of interest and the
numerical values are listed in table THL

As M is increased, n critical value A, is reached
at approximately 35.6° at which the position of
the upper singular point coincides with that of
the upper neutral point. I Xis inereased beyond
Ao the procedures described above to determine
the upper rear portion of the boundary no longer
apply because it develops that 8y, is less than
0*“1,'
portion of the boundary for which 8 is between
B, and b, However, the integral curve from

and the condition cos ¢ <0 is violated on the

figure 6(b) that can be joined to the curve repre-
senting the lorepart of the hollow at the point
where cos y=0 satisfies the requirement that it
extonds downstream to infinity with cos ¢ <0
evervwhere. It follows that the front and upper
rear curves can be joined smoothly at the point
where 8="0y,= s, that both portions of the
boundary are parallel to the direction of the
corpuscular stream at this point, and that the
condition cos ¥ <0 is satisfied at all points on the
boundary. Since the values for px,, and 6y, are
known from the solution for the front portion of
the boundary, the appropriate values for A,
designated Ky, for the upper rear portion of the
boundary can be determined by direct substitu-
tion into equation (18) with lower signs. The
resulting expression is

3 cos H_qF 2 cos Oy,

Ps,-,v2 PNUZ
and the values for Ko for A==35.6°, 40°, and 45°
are  1.809, 1.789, and 1.770. The numerical
alues for the coordinates of the boundary for

these values for A are included in the lists given in
tables TI and 111, and the results are presented
graphically in figure 8.

SOLUTION FOR EQUATORIAL PLANE FOR A=0

The trace of the boundary of the hollow in the
equatorial plane for the case X=0 can also he
determined in a simple manner by numerical

33—

@D
v
3 O Neutral point
a

psiné

Fictrre 8 Form of the boundary of the hollow in the
meridian plane containing the dipole axiz and the sun-
earth line; 36.5° <A <45°.

integration of the following differential equation
obtained from equations (9), (12), and (13) by
equating 6 to =/2, A, and 0p/08 to zero, and by
restricting attention to the interval =2 <o <3mwf2:

dp_ / p®sin @ Cos o+ yp'— 1 (34)
de Pt cos? p—1 '

”u
‘W‘\‘}‘\”HHHHU
‘\HHM‘HMHM
il i
T
i,
‘WH‘ MM““H‘ i)
“léihw“ii‘ ‘IM“EWM\

‘ i
MHMW”WH |
TR
lOl1\‘“\“”‘1‘\‘\“““}SL

Al

x/a v =500 km/sec
=10 protons/cm
f=1

Frarre 9. -Boundary of the hollow in the equatorial
plane and the meridian plane containing the dipole axix
and the sun-earth line; X0,
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A short table of values representing the solution
A more
extensive table of values has been determined by
the present authors and an abridged list of the
results i1s given in table IV, The ealeulations
were performed with an IBM 704 electronic
computer using the fixed increment, fourth-order
Adams-Moulton method together with the Runge-
Kutta method to start the ealeulation at the apex
of the hollow.  The results were ealeulated using
half-degree inerements in ¢, although only the
results for 5° intervals are provided in table 1V,
These and the preceding results for the case in
which A=0 are illustrated in graphical form in
figure 9 for the representative conditions defined
by values for r, #, and f of 500 km/sec, 10 protons/
em® and 1,

has been given by Beard in reference 8.

TWO-DIMENSIONAL PROBLEM

DERIVATION OF APPROXIMATE DIFFERENTIAL EQUATION
FOR THE COORDINATES OF THE BOUNDARY OF THE HOLLOW

Consider now the counterpart in two dimensions
of the problem discussed in the preceding sections
of this paper.  Although it would be somewhat
more natural to express the fundamental equations
in u polar coordinate syvstem, the spherical and
Cartesian coordinate systems illustrated in figure 1
are retained to faeilitate comparisons.  Attention
15 thus confined to values for 8 between 0 and =,
and the notation sin{+ #/2) is used to indienie the
desired hall plane in the same manner as in the
three-dimensional probleni.  The fundamental re-
lations are still given by equations (1) and (2)
and the associated boundary conditions, but all
quantities are Invariant
changes in .

Equation (3) for the permanent magnetic field
ix thus replaced by equation (4), and the COmpo-
nent thereof that Lies in the surface of the hollow
Is given by

required to  be with

nE H,, — ("M, /r%) [sin 0+ (1/9)(dr/de) cos 6] (33

Combination of this result with the fundamental
approximate relations given by equations (1) and
(8) and introduction of the dimensionless radius
) = rf’r..2 where

4740, BN\ ’ 4_/211,,02 1
T, = =qu ( - - (36)
2 167 mnp? A6rmn?
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leads to the following differential cquation for ihe
shape of the surface of the hollow

+ : <sm 9—+— ‘(os{))
Pt

. VAR 3 .
=511 # ¢0s A sin (i‘))—ms #sim A

- 1/;; [( 0s 8 cos A sin ( )—}—sm 8 sin )\:I (37)

The significance of the alternative - signs is the

same as discussed following equations (13) and

(14
SOLUTION FOR TWO.DIMENSIONAL PROBLEM

As in the three-dimensional problem, it is con-
venient for the (lmussmn of the solutions to drop
the consistent use of plus and minus signs em-
ployed to this point and consider the two families
of solutions associated with the following equation
equivalent to equation (37):

:grlilﬁ Asin (£m/2 T sin g (3%)
P22 cos [B—Asin ( 4+ 2) 4 cosd o

Vflp‘_)“_ 7pu
do P?

The solutions are given by

. 1 . \
Py COS [0—)\ S (i 7:):'* ceos 80— K (39)
< P2

where K is an arbitrary constant of integration,
and the sign convention is the same as that,
deseribed previously in conneetion with equations
(17) and (18). The evaluation of K for the
curves defining the boundary of the hollow requires
consideration of the singular points in a manner
analogous to that emploved for the three-dimen-
sional problem.

Results for A=0. The solutions given by
equation (39) reduce for the case of A==0 to

I\rpzz

2T Py COS =
= P+ 1

(40)

Plots of the integral curves are shown in figure 10
for several values for K. Examination of thoese
curves reveals, for the same reasons as in the
three-dimensional problem, that the desired solu-
tion is deseribed by the unit eirele

pa=1 (4])



DETERMINATION OF THE FORM OF THE HOLLOW IN THE SOLAR CORPUSCULAR STREAM 15

. S
B A
$:°7
2 — e —
"1 |

A

(g
i Mo,

Py COS 8
o

aks
1T

\
-2
(a) L_
2 T 0 I
Py sin@

() pg cos §-=Kp2i{p — 1)

Frevre 10,
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F¥ravre 11, Form of the boundary of the hollow in the

two-dimensional problem; x--0.

2 i ' 0 | ' 2
p25|n9

(h) pycos 8— Kp2ilp? { 1)

Integral curves defined by equation (40).

for the region defined by e==/2, end by

2‘922
pat+1

Co=py COS = 1= (42)
for the region defined by ¢=—m/2. The curves
represented by equations (41) and (42) meet, of
course, at the neutral points direetly over the
poles, and determine the form for the boundary of
the hollow illustrated in figure 11. This result
has been determined independently by Hurley
(ref. 10).

Although the form ol the hollow is generally
similar in the two- and three-dimensional prob-
lems, it should be observed that the size of the
hollow is much larger in the two-dimensional prob-
lem.  Iusertion into equation (36) of the same
alues that lead to a value for ryfa of 7.6 in the
three-dimensional problem leads to a value for
reafa of 20.8 in the two-dimensional problem.  The
size of the hollow is also more sensitive to varia-
tions in the values selected for fin the two-dimen-
sional problem. For example, arbitrary selee-
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tion of 0.75 for f would reduce the values for »ja
and rpfa by about 9 and 13 pereent, respeetively.,
Results for arbitrary A. The coordinates py
and f¢ of the singular points required for the
evaluation of the integration constant K in
equation (39) are determined by equating the
numetator and denominator of the right-hand
member of equation (38) to zero, and solving the
two resulting algebraie equations simultaneously.
This procedure leads to the following relations

tan fq+ tan [fe—A sin (£7/2)]=0 (43)
pg\,*—l (44)

Equation (43) can be solved to yvield explicit ex-
pressions for the angular coordinates of the singu-
lar points. Two singular points having coordinates
given by

T A A
>

0.&',,,‘1.)‘1("‘)’ By, = (45)

.\(- _-

are in the half plane defined by ¢= /2, and two
having coordinates given by

A T A ,

9‘*’1,:”_2’ O0sp=5" o (46)

are in the hall plane defined by ¢= —=#2. The

values for A associated with the integral curves

that pass through the three singular points of in-

terest in the following discussion are given in

terms of the coordinates of the singular points by

N 2 cos by, ; 2 cos b,
Ky, =— ) K, = ,
p2 Prg,.

25y
(47)

or, more explicitly, by

A
Lo =2 COS Ly
5 K =2 cos

= <

. A
[\-\'p 281 o

K, =—2 cos ); (48)

The coordinates of the four singular points of
equation (38) and of the two sets of integral curves
defined by equation (39) are illustrated in figure 12
for the special case in which A is 30°. The lines
defined by 8=, and 0= 65, are also included on
these plots, sinee considerations wdentical to those
deseribed in connection with equation (32) reveal
that they are again the locus of points at which
the integral curves are parallel 1o the direction of

the corpuscular stream. The curves of part (b)
that pass through the upper and lower singular
points remain exceptions, however.

Examination of the curves shown on figure 12
reveals, for the same reason as in the three-dimen-
sional problem, that the desired solution for the
front part of the boundary is provided by the
integral curve from part (a) defined by K=K,,.
The integral curves from part (b) defined by
K=K, and K--Kj, puss through the upper and
lower singular points and represent the counter-
part of the curves seleeted to represent the upper
and lower rear portions of the boundary for the
three-dimensional case for N less than A, =35.6°.
Solution of the appropriate pairs of forms of equa-
tions (39) and (48) shows that the curves through
the upper and lower singular points intersect the
curve representing the front part of the boundary
at the points

1

L ¢
Cos (A2)—sin (A2) (49)

8=0,  p,
and

1
PP T s (V) esin (V2
Sinee the latter of these is on the sunward side of
the lower singular point, the condition cos <0 is
satisfied and the integral curve through the lower
singular point represents a portion of the boundary
of the hollow.  On the other hand, the upper inter-
section point indicated by equation (49) is [arther
from the sun than the upper singular point in-
dieated by equation (45). Tt follows that the
integral curve through the upper singular point
can not be used to represent a portion of the
boundary ol the hollow, because the condition
cos ¢ <0 15 violated wlong the front portion of the
houndary for 6 between 0 and A2, The desired
solution can he obtained, however, by following
the procedure deseribed for the three-dimensional
problem for A greater than A, that is, by joining
an integral curve from figure 12(h} to the integral
curve representing the front part of the boundary
at the point where §=6s,.. The curves represent-
ing both the front and the upper rear portions of
the boundary are parallel to the direction of the
corpuseular stream at the point where theyv are
joined and the condition cos ¥ <0 is satisfied
all points on the boundary. The appropriate
value for K that defines the curve for the upper
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B, [ S
2 | 0

PpSin 8
() pr cox [0

A sin( : 77:)]71 cos =K
2 o2

Fiorre 12

rear portion of the boundary is designated K and
can be determined by simple substitution, It s

K, =2 (51

The form of the boundary of the hollow has
been caleulated using the procedure deseribed
above for several different values for X ranging
from 0° to 45°  The rvesults are tabulated in
tables V and VI, and an abridged series of plots
showing the shape of the boundary for X -0°,
152, 30°, and 45° is presented in figure 13, It
should be observed that the seales employed to
plot the results are proportional to f'p, rather
than p, alone so as to facilitate comparison in the
next section with the results indieated by the
exact solution in which the factor f does not appear.
Results are shown for each X for two diiferent
values for f, that is, for f equal unity, and for f
equal to the particular value necessary for the

1

pzsmB

. 1 .
(b) py cox [0 -\ .\‘m( ; t):l—k ~eox 8=K
- p:

Integral curves defined by equation (383, two-dimensional problen; A —=30°.

approximate solution to agree with the exaet
solution at the front singular point.  The Iatter
vilue is very nearly a constant independent of X,
varving only from 0.9125 to 0.9133 as X varies
from 0° to 45°. It ean be seen from comparison
with the results shown on figures 3, 7, and &
that the shape of the hollow is generally similar
in the two- and three-dimensional problems.  As
noted i the preceding section, however, differ-
ences between the normalizing distances ry and
ry, defined by equations (12) and (36) are such
that the size of the hollow associated with w given
set of values for o, n, and I1, is much greater
in the two-dimensional problem.
COMPARISON WITH EXACT SOLUTION

A measure of the accuracy of the approximate
results presented in the preceding sections can
be obtained by comparison with the corresponding
results indicated by the exaet solution of the two-
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Boundary Neutral point
Approximate solution [
———- Fxact solutior o}

(o)
~

o '|
VF p,sin 8 Vf p,sin @

Fravre 13- Form of the boundary of the hollow, two-dimensional problem; 6° <X <15°,

dimmensional  problem given by Zhigulev and exaet solution are comparuble with the approxi-
Romishevskii (ref. 5), Hurley (ref. 10), and mate results given herein in that they are based

Dungey (ref. 6).  The results indicated by the on the same governing equations and boundary
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Froere 14 View of coordinate system and principal
syiibols used in exaet =olution by Zhigulev and Romi-
shevskii (ref. 5.

conditions.  They differ in that these equations
are solved exactly rather than through the intro-
duetion of the approximation that /7, is equal to
2f times the tangential component of the per-
manent magnetice field,

The exact solution is obtained by application
of conformal mapping techniques, and expressions
are presented in parametrie form for the coordi-
nates of the boundary of the hollow. Dungey
presents results for only  the case N+ 0, but
Zhigulev and Romishevskii and Hurley present
results for arbitrary A, The results are expressed
in somewhat diiferent forms in the three papers,
but it can be shown that they are all equivalent
for the cases to which they apply.  The present
ealeulations were performed using the formulation
for the solution given by Zhigulev and Romishev-
skii, since it was desired to determine results for
all A, and Hurley’s paper was not available at the
time.  The coordinate emploved by
Zhigulev and Romishevskii is fixed with respect
{o the corpuscular stream rather than the earth,

system

however, and the results for X diiferent from zero
are of such form that they do not lend themselves
to convenient conversion into the coordinate sys-
tem emploved herein. A sketeh tlustrating the
coordinate system and prineipal symbols used in
the latter paper is shown in figure 14,

The F coordinates of the beundary of the hollow
are given by

—_ - 9 9 o« [ T
el 2, ol I ]ﬁ(‘, D7 eos ne
A T 91 —cos(p-Hy)] Ta=2 ninc—1)

(52)

where 2 is a parumeter that varies between 0 and
270 A is a definite constant for any given ¥. but
its value 8 not given by Zhigulev and Romishev-
skii. I attention is restricted to posiive values
for ¢, the 7 coordinates of the boundary are given
hy

G 1 cos a— for 0<g<m (53)
Y A=—1—cos 5#24_/,‘% for 7r§<5§27r—¢ (H4)
and

A= 3—cos g—in for 2r—y¢<a<2r (53)

Of the three expressions for 7, the first provides
values corresponding to the front, the second to
the lower rear, and the third to the upper rear
portion of the boundary.  The points at which the
curves for the front and rear portions join are, of
course, the neutral points. The corresponding
ralues for 3 are thus 0 or 7. Of particular in-
terest is the fact that the slope d/dr of the bound-
ary is zero at the neutral points. This result,
which ean be aseertained readily from the ratio of
the loeal values lor 3 /de and dridg, indicates that
the boundary ol the hollow is parallel to the direc-
tion of the corpuscular stream at the neutral
points. It Tollows as n consequence ol the lact
that 71,, and henee also cos ¢ necording to equa-
tion (1), must vanish at a point where o magnetic
line bifurcates.

The quantities ¥, 7, and 7 that appear in equa-
tions (52) through (55) are related to X, y, and =
of the present analysis as follows:

T3 (56)
9

y=—0 cos A sin X (57)

2=Fsin A7 cos N (HN)

The coordinates of the boundary have been
ealeulated using the above equations, and the
results for the quantity »/(1.078.1) where = r2+%9*
are presented in tables VITand VITL The factor
1.078 has been ineluded so that r/(1.078:14) s
unity to three decimal places at the position of the
front singular point in the approximate two-
dimensional analysis, that is, at the point where
s, (w1 N) /2. The resulting values are thus
directly comparable with the values for p, that are
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obtained with the approximate analysis with the
value for f selected so that the approximate and
exact results agree at 8=46s,. It should be noted
that the factor required to reduce r/sl to unity is
not quite independent of X, but varies between
1.0779 and 1.0784 as A increases from 0° (o 45°,
The expression for A required to caleulate the
actual size of the hollow is not given by Zhigulevy
and Ronmishevskii, but can be determined from the
solution given by Hurley in reference 100 Tt s,
after adjusting for differences in nomenclature,

e M, Jm  0.886

: \!i.’(Hrrm'n/“")"“‘:/‘“2\“/'4./‘N \7- To, (DY)

These considerations lead to the concept of pre-
senting comparisons of the results indieated by the
exaet and approximate solutions in terms of the
quantity

/ . D
Ki P, 107 \‘4 1.078.4 0. ))(1.07(\}1
(60)

rather than simply g, The necessary ealeulations
have been performed, and the results are indicated
by the dashed lines on figure 13 for comparison
with the approximate results for the two-dimen-
It should be noted that the result
indicated for A=-0 differs somewhat from the

corresponding  result in figure 2 of

sional problem.

presented
reference 6 by Dungey sinee the Iatter contains a
nunmerical ervor in the ealeulation of the « coordi-
nate of the boundary,

It cun be seen that the forms for the boundary of
the hollow indicated by the approximate und
exaet solutions are in good agreement for all x up
to at least 45° with only minor differences occur-
ring 1 the vieinity of the neatral points. The
differences are slight in magnitude and local in
extent, morcover, and it mayv be concduded that
only a small loss of aceuraey is ineurred by intro-
duction of the approximation that 77, is equal to
2/ times the tangential component of the per-
manent magnetice field.

The size of the hollow indicated by the approxi-
mate theory depends upon the choice of value lor
fohowever, and it ean be seen that the procedure
of simply equating f (o unity leads to dimensions
for the hollow that are about 5 percent too large.
A substantial share of these differences is removed
upon selection of » value of 0.913 for £ for any
A between 0% and 45°. This value, which ean be

obtained readily from equation (60) by equating
p’and »#/(1.0784) to unity and solving, may be
contrasted with the value of 0.68 given by Ferraro
m reference 9 for the case of a current earrving
wire. The effects of this approximation have been
evaluated only for the two-dimensional problem,
but it is anticipated that the results would be of
comparable quality for the three-dimensional case,
[t is possible, since f enters as the cube root in
the three-dimensional ease compared with  the
square root in the two-dimensional ease, that the
aceuracy of the approximate results may even
be somewhat better in the three-dimensional

problem.
CONCLUDING REMARKS

The results of a theoretical investigation of the
form of the hollow carved out of u neutral stream
of ionized solar corpuscles by interaction with a
magnetic  dipole representing the geomagnetic
field have been presented in the preceding para-
graphs.  The basic concepts of the analysis are
classical and stem from a long series of investiga-
tions of Chapman, Ferraro, Dungey, and others.
The equations have been simplified by the introdue-
tion of a single assumption suggested and com-
mented upon recently by Beard and Ferraro in
references 8 and 9. Analvtic and numerieal solu-
tions have been determined without recourse to
further approximations.  The results are consist-
ent with those indicated by earlier theoretieal
studies, but this is as should be expected, sinee the
latter are based on essentially the same concepts as
the present ealeulations. The corresponding prob-
lem in two dimensions is also considered, and 1t ix
shown that the analogous approximate results are
in good agreenient with the results indicated by the
exact solution given recently by Zhigulev and
Ronnshevskin (vel. 5), Hueley (ref. 10), and Dun-

gev (rel. 6).  Although a similar check on the
aceuracy of the approximate results for the three-
dimensional ease can not be accomplished at the
present time, itis anticipated that the results given
herein represent good approximations to the exact,
solutions,

The size of the hollow indicated by the theoreti-
cal studies 18 nevertheless not in good agreement
with that indicated by magnetometer data from
Pioneer V reported recently by Coleman, Sonett,
Judge, and Smith i reference (5. These data,
acquired in the vieinity of the equatorial plane



DETERMINATION OF THE FORM OF THE HOLLOW IN THE SOLAR CORPUSCULAR STREAM 21

on the afternoon side of the earth, show that the
geomagnetic field terminates at a distance of about
14 earth radii from the center of the earth.  This
result may be compared with the distance of about
7 to 10 earth radii indicated by the present ealeu-
lations when representative values are used for the
velocity » and number density n of the corpuscular
stream.  This is a large discrepancey which ean not
be resolved by simply choosing different values for
pand n sinee the necessary values are unaceeptably
small.

The magnetometer data from Pioneer V, and
also from Explorer V1, display variations that
have been interpreted by Smith, Coleman, Judge,
and Sonelt in reference 16 as indicating the
presence of a westward flowing current of about
5% 105 amperes distributed over a large volume
having the form of a toroidal ring situated in
the magnetic equatorial plane at a distance of
about 10 earth radii.  The magnetic moment of
such a current system is of the same sign and
order of magnitude as that of the main dipole
field. It is apparent that the presence of the

ring current has the effect of greatly inereasing
the size, as well as altering the form, of the
hollow. The present investigation has been ex-
tended, therefore, to determine the effects of an
equatorial ring current: [t has been found, for
the ease in which »=500 km/see, n=10 protons/
em?, A=0°, and f=1, that the geocentrie distance
to the intersection of the boundary of the hollow
and the sun-earth line, which is about 7.6 earth
radii for the dipole alone, inercases to about
12.0 earth radii with the addition of a ring cur-
rent of 5% 108 amperes having infinitesimal cross
soction and situated in the magnetic equatorial
plane at a distance of 10 carth radii. While this
model is admittedly highly simplified, the caleu-
lated distance to the boundary of the hollow is
compatible with the observed distance. 1t thus
appears that the addition of the magnetic field
of a ring current will suffice to remove the major
part of the discrepaney noted above.

Ayes ResgarcH CENTER

NATIONAL AERONAUTICN AND NPACK ADMININTRATION
Morrer FiegLo, Canre., Jexe 9, 1961
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TABLE L-- VALUES FOR 85, ps, AND Ay FOR VARIOUS A

A, 0»"[:' : [ : N Sp 8“1 . s ; [\'N,, ! H‘\’L‘ PN, N S

deg deg i deg i 3 deg

0 ‘ 90. 00 1. 0000 0 0 1. 2600 1. 8G00 180, 00 1. 2600 — 1. 8900

b 91, 67 1. 0004 L0872 3,33 1 2594 1. R84 176. 67 1. 2594 - 1. 8884

10 93, 34 1. 0017 R it P4 6, 66 1. 2578 1. 8836 173, 34 1. 2578 - 1. 8836
i5 95, 03 1. 0038 . 2608 9,97 1. 2551 1. 8756 170, 03 1. 2551 1. 8756
20 96, 73 1. V067 34067 13. 27 1. 2515 1. 8644 - 166, 73 1. 2515 1. 8644
25 98, 15 1. 0105 L4317 16. 55 [. 2468 1. 8500 —163. 45 1. 2468 1. 8500
30 L 100, 20 L0151 ¢ . B1aT 19, 80 1. 2411 1. 8324 - 160, 2 12411 - 1. 8324
33 1099 10205 . HURY 23. 01 1. 2346 L.8LIG - 156, 499 1. 2346 1. 8116
33. 6 102, 21 1. 0212 . 6082 23. 39 1. 2337 1. 8089 — 156, 61 1. 2337 1. RORY
40 13, S 1. 0267 . 6B796 26. 19 1. 2272 1. 7876 — 153, K1 1. 2272 -1 T8T6H
45 105, 68 1. 0336 At 24, 32 12190 1. 7605 150. 68 1. 2190 — 1. 7605

i i I
‘ i i ! I R -

TABLE 1. COORDINATES 8 ANDp OF BOUNDARY OF HOLLOW IN THE MERIDIAN PLANE CONTAIN-
ING THE DIPOLE ANIS AND THE SUN-EARTH LINE FOR VARIOUS A

F g
X, deg
a, deg N
0 3 10 15 20 25 30 35 35.6 40 45
i i
4] 1,260 1. 316 1. 378 1. 448 1. 529 1,622 0 1,730 1. 858 L8751 2,013 2,215
5 1. 186 1. 286 1. 288 1. 347 1.414 1. 493 1. 583 1. 688 1. 702 1. 815 1. 978
10 LY16 . 1,157 1,202 1. 246 1. 314 1. 3%0 1. 455 1. 542 1. 553 1. 646 1. 782 ‘
15 1.051 | 1.086 1. 126 1. 170 1,276 1. 278 1. 341 1. 413 1. 423 1. 501 1. 618 |
20 1. 000 1. 022 1.054 | 1.093 1.135 1. 183 1231 1,299 1. 307 1. 375 1. 479
25 1. 000 1. 020 1.043 | 1. 069 1. 100 1. 135 1. 176 ¥, 223 1. 229 1274 @ 1, 369
30 1. 000 1. 018 1.039 . 1.063 1.091 | 1,123 1. 160 1. 202 1. 208 I 252 i 1. 310
35 1. 600 1. 016 1.035 | 1.057 1. 083 1112 1145 1. 183 IS8R 1,228 0 1,279
40 1. 000 1. 015 1. 032 1. 052 1. 075 1101+ 1,131 1. 166 1.17¢ 1. 206 1. 252
15 1. 000 1. 013 1. 029 1. 047 1. 067 1. 091 1. 119 1. 150 1. 154 1. 186 1. 228
S0 1000 Lot 1,025 0 1,042 0 1.060 1. 082 1. 107 1. 136 1. 139 1. 168 1. 206
55 1.000 | 1.010 1.022 | 1.037 1. 054 1. 073 1. 086 1122 1. 125 1. 151 1. 185
60 1. 000 . 1,009 1.019 | 1.032 1.047 1 1. 065 1.085 1. 109 1,112 1136 1. 166
65 1. 600 1,007 | 1.017 f 1. 028 1. 041 i 1.057 1 1.076 1 1.097 1. 099 1. 121 1. 149
70 1. 0600 1. 006 .04 | 1,024 1.LO3G | 1.050 ; 1.066 1. 085 I. OR8] 1. 107 1. 132
75 1. 000 1,005 1.011 1. 020 1. 030 1.042 ' 1.05/7 1. 074 1. 076 1094 1116
80 1. 000 1. 003 1. 009 L OLG - 1,024 1. 035 1. 048 . 1. 063 1. 0G5 L. 081 1. 101
%5 1. 000 1. 002 1. 006 1. 012 1. 019 1. 028 1. 040 1. 053 1. 055 L. 069 1. 087
90 1. 000 1. 001 1. 003 1. 008 1.014 1. 021 1. 031 1.043 . 1.045 1. 057 1.074
95 .00 , 1000 1. 001 1.004 1,008 1. 015 1023 1.03¢4  1.035 1. 046 1. D60
100 1. 000 C098 LO9R 1,000 7 1,003 1009 ! 1,015 1. 024 1.025 L0350 1.048
105 1. 000 . 997 . 996 . 996 L908 ¢+ 1.002 1. 008 1. 015 1. 016 1. 024 1. 0356
L1 1. 000 . 996 . 993 L 992 . 993 . 996 1. 000 I 1.006 1. 007 1. 014 1. 023
L5 1. 000 L 995 . 091 . 989 . USS . 989 . 992 . 997 L9988 1. 003 1. 011
120 1. 000 L9893 CO8R L 985 983 - . 983 . 985 . ORS . 989 . 993 1. 000
125 1. 000 L 992 - L0851 981 . 978 ¢ L 977 . 977 . 979 . 979 . 983 . 988
130 1. 000 . 990 . 983 L9977 . 973 L8970 . 969 . 970 . 970 . 973 . 977
135 1. 000 . O8O L 980 . 973 . 967 . 964 | L 962 . 961 L0961 ! . 962 L9656
140 L 000 . 98K . 977 . 969 L 962 . 957 . 954 ¢ . 952 . 952 . 952 . 954
145 1. 000 . 986 . 974 . 964 . 957 . 950 . 946 ¢ . 943 . 943 . 942 . 942
150 1. 000 L0984 | 971 | . 960 951 ! . 944 . 938 . 934 . 934 . 932 . 931
155 1. 000 L 983 L 968 | . 956 L 945 . 936 . 930 . 924 . 024 L 924 . 916
160 1. 000 . 981 . 965 . 951 - 939 L9029 L 921 L9156 L 914 . 910 . 907
165 1. 000 1. 018 . 989 . 963 . 939 . 922 . 912 . 905 . 904 . 899 . 895
170 1. 051 1. 079 1.045 1 1,015 . OR8] . 964 . 941 . 921 . 919 . 503 . 887
175 1. 186 1142 1.104 | 1.070 1. 039 1. 011 . 986 . 963 . 961 . 943 . 924
180 1. 260 1

S 210 L6710 128 1. 093 1. 061 1. 032 1. 007 1. 004 . 983 . 962
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TABLE 11
TAINING THE

COORDINATES 8 AND » OF BOUNDARY OF HOLLOW IN THE
DIPOLI. ANXIS AND THI SUN-EARTH LINE FOR VARIOUS X

MERIDIAN

m

1 £ 2

|

. A, deg

|6, deg _

! i i !

0 ! 5 w15 20 25 | 30 35| 35.6
|

| ! i

| 0 1. 260 ! L3316 | 1.378 1448 ! 1520 1.622, 1730 1.858 L 875

| 5 1341 . 1. 4051 1.478 ‘ 1560 1657 ; 1.768 | 1,900 2058 2079
10 (430 0 1505 0 1590 | 1688 . 1803 | L4391 2101 | 2208 1 2325
15 A28 1 1616 1717 L83 1973 2 140 2,342 2505 2630

i 20 1639 | 1742 1862 2.004‘ 20174 2382 2641 | 2973 3010

‘ 25 1764 | 1,886 . 2031 2206 | 2417 2682 3.022 | 3473 3537
30 1,907 | 2,055 | 22320 2 448 2. TI8 | 3‘0651 3.525 0 4169 4263
35 2 07h 20255 . 2475 2749 0 3102 RAT2 T 4227 0 5208 | 5360
10 2,273 2497 2776 30134 1 3610 4278 A277T 1 69381 7215
15 2 5014 0 2 TOT 3161 0 3645 43220 5336 024 ‘
50 JURI4 3182 3672 4358, 5386 | 7099 ‘
55 3197 3693 4386 54270 7160 ‘
60 3707 | 4407 . 5458 0 7210 ;
65 | 44200 5480 7247 \ "0 857
70 5402 7271 | T.026 6754
i) 7,283 7100 | 50323 ALY
80 i 161, B375 . 4300 | 4200
85 \ 7.210 5 418 4347 3,636 0 35067
90 T.247 0 5451 4377 3665 . 3.1a8 3107
95 7271 5475 4401 0 3 68T 3180 | 2801 2762
o | 7284 5490 0 41T 37031 3196 | 2817 2523 2443
05 | 7283 B 406 4426 30714 3207 1 20828 | 20534 2301 | 2276
110 5402 4427 3 TI8 3212 2834 0 2541 0 2308 21190 2048
15 1420 3716 32013 20836 0 2544 2312 21220 LY66 194
120 3707 030208 2833 2543 0 2312 2423 1067 1835 1821
125 307 2820 20538 2308 | 2120 LOsh 1834 L7220 1710
130 DURI4 2A28 . 2300 2 114 1960 1829 L7I8 | L6231 612
135 20514 2280 2105 1951 1822 L7120 L617T | L5350 1520
140 2073 2002 Lo L812 L7030 1609 | 1527 1 1456 | 1448
145 20t Lu2s . LTye L6l | 1598 LAIT L L4d6 L3813V
(50 Lo07 L7831 L677 1A% 1505 . 1435 1373 L3180 13120
155 LTt L6590 L 560  1L490 , L4210 1360 1306 | 1238 1253
160 L6300 1530 L4730 1405 0 L3450 L2020 1240 1201 L1t
165 CAo8  Lo4B3 0 1386 1327 0 L2760 1226 | LI8s% 1148 L1
170 430 1.365 0 1308 L2650 1200 LI68 T 1L132 0 L099 o 1095
175 L34 D286 L2330 L1890 L1409 11l LORL D L0521 048
(80 1060 0 1210 L 16T, LI28 L0930 GGl Lo32 0 1007 LObd

TABLE I1L.- COORDINATES

A, deg
4] 5 10 15 20 25 30 ! 35 [ 35,6
O, deg L1910 14, 50 20. 75 21. 00 22. 20 2240 | 22,50 . 23,60 23. 39
PNy [ 1000, 1.023 1. 043 L0533 0 1103, 1142 1183+ 1.235 1 1.239
By, deg 161.00 1610 163, 0 1634 163. 75 165, 4 165. 7 167.5 1677
1. 000 L A960 960 o923 ! . 920 . 900 . 8490 . 8030

PN,

On AND pn

L U42

23

OF NEUTRAL POINTS FOR VARIOUS A

PLANE CON-
Coneluded
0 4
i e
\
2 013" 2215 |
2,252 2507
2 547 | L 879
2 0922 1 3370
3417 4053
1.106 | 5072
5135 0 6. 766
6. 845
L6843
6. 941 5193
5 263 1 4211
1,263 3562
3602 3. 101
3132 0 2757
2 781 | 2490
2. 508 2. 276
2,200 2101
2. 111 I. 955
1961 1830
1,831 1 1.722
1723 | 1627
1,626 | 1.343
1.540 | 1. 468 |
1463 1399
393 1,337
1329 | 1280
1.270 1 1,230
1214 1175
1163 1 1129
1115 1.084
1069 . 1. 042
1.025 | 1. 001
. UR3 L0962
|
[
0 | 45
26. 19 | 29,32
1275 1303
168, 50 169.2
0. 886 | . 880 |
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TABLE IV -COORDINATES OF BOUNDARY OF HOLLOW IN THE EQUATORIAL PLANE, A -0

¢, deg o ; ¢, deg : p

O, 00 10000 180, 00 1. 3491
45. 00 1. 0008 185, 00 1. 4053
100, 00 1. 0032 190, 00 1. 4698
105. 00 1. 0072 19500 | 1. 5444
110, 00 L0129 1 200,00 ! 1. 6310
115, 00 1. 0203 205. 00 k. 7326
12000 10295 210. 00 I. 8528
125,00 | L0406 21500 1. 906H
130,00 01,0537 | 220,00 2 1719
1:35. 00 1.O68Y || 22500 2. 3881
140. 00 1.0865 | 230. 00 2, 6612
145. 00 1. 1066 235. 00 3. 0156
150, 00 1. 1296 240. 00 34919
155. 00 11557+ 24500 11635
160. 00 11852 . 250, 00 5. 1767 |
165. 00 12187 235 00 6. 8735 |
170. 00 [.2567 ©  260. 00 10. 2794
175. 00 . 2999 | \

| |
TABLE V. COORDINATES 8 AND py OF BOUNDARY FOR VARIOUS A, TWO-DIMENSIONAT PROBLEA

. b
M
A, deg :
0, deg 3 . o _1
i . i | |
\ 0 3 : 10 15 20 25 30 35 10 ! 15 ‘
i ] i
0 1. 000 Loss Lo 122 1. 326 o441 ] L L7400 | 2. 180
5 1. 000 1. 043 1. 09t 1. 155 1. 236 333 | L S 1531 | 1. 941
10 1. 000 I. 039 . (083 L1334 I to2 o264 | 1. I T 113 1 1. 758
15 1. 000 1. 036 1076 L1220 b1 1. 234 (I ‘ 1. 388 1 1. 622
20 1. 000 1. 033 1. 069 L 1159 1,213 (I | 1346 1 1. 528
25 1. 000 1030 . 063 | D 101 T DA [ S T YR [. Loto312 i 1. 170
30 1. 000 1. 027 . 0”7 1. 092 P 52 I B l.: P22 1 1. 423
35 1. 000 1. 024 l. 052 1. 083 I8 | 1158 [.: 1. 254 1 1. 380
10 1. D00 1022 ILO47 | 1L 075 1106 1 10424 . 1. 224 1 [ P £ 94
45 1. 000 1.0ty 1. (142 LOBT 1,095 L1288 | I 1. 206 1 L1307
A0 1. 800 1017 | 1.037 L.OMY 1 1. 085 L 1. 185 1. C1275
55 1. 000 O3 | 032 0 1052 1. 075 1. 101 1. 1. 164 L. 201 1245 |
60 L. 000 1OI3 1. 028 1. 046 1. 066 1. 089 1. i 145 | 1218 |
65 1LODO | 1.011 L0241 1034 1. 057 1. 077 1. bo127 1 1. 192
70 O 11009 1020 1,033 1. 048 1. 066 1. Lt 1 1. 168
s 1. 000 1007 LOIG 1 10260 0 1040 1. 055 1. [ 1. 004 1 I145
80 1. 0040 . 005 1. 012 1020 | 1031 I, 045 1. b 078 I [. 123
85 1. 000 1. 003 . 008 LOI5 | 1.023 I, 034 1. 1. 063 | 1. 102
Q) 1. D00 1. 001 . 004 1. 009 1.01h 1. 024 1. 1. 049 1 1. 182
05 1. 000 L9099 1. 000 1. 003 1. OO 1. 015 1. 1. 034 1 1. 063
100 LOoou 94T SO07 09T L 000 1. 005 1 1. 020 1 1. 045
105 Loog | 995 S092 0 ae3 092 L9950 1L 000 1. 007 1. 016 1. 026
S 1) Looo |+ 993 . U89 . U86 L U8T 986 U89 943 1. 000 1. 009
I S ¥ 1000 .99l L U85 . 980 COTT L OTT Rt L 980 L U85 901
S0 1. 000 L URY 481 S974 L070 L O67 967 CO67T L4070 L0974
125 [.ODO . 98T CUTT L 068 L9620 93T 055 L9541 955 CYUBT
130 [. 000 O8R5 L 0TS . 963 LUsE T U048 ) a4 T ) S ) I R S |
135 LOBD 983 1 96h . W57 L U16 L4938 L4932 B 1 S R {12)
140 [LOOO L uRl 965 . 950 L 038 CU28 L9020 1) ST S907
145 1O 974 960 CO44 L0930 COL8 909 801 0 U RY5 . 890
150 1. 000 LU76 IBIH CO37 L4022 908 Rt . R8T L RTY . 874
155 1. 000 L0974 .51 931 L4013 . 898 . R84 LRI U864 . 856
160 1. 0G0 Rk L 946 924 L 904 . 887 L RT2 . 859 . 848 .83y
165 L0000 06y .04 . 916 . 894 . 875 . 859 S84 U832 821
170 1. 000 . 966 . 935 LS . 885 . 864 . 845 . 829 815 1 .803
175 1. 000 L962 L9249 . 900 . 874 . 851 L8311 814 LT98 LT85
180 1. 000 Suh9 a2y . 841 . 863 . R38 L RIT L 797 LTRO L T65
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TABLE V.

150
C 145
‘ 160
|16
170
175
180

TABLE

9‘\;1,, (1(';.{
sz(,
Ox,, deg

P2y
PN

VI

|
|

000 |
Cour !
102
L3030
428
L5700
,mz‘
L9021

SEIFRCP SIS

o
[
<L

il

—— e e IO R e

COORDINATIER oy

RS S el e
S

-1
1)
)
o

‘_..._._.__..—__.-——h',l".l\'.l&:&-i—;"\l
—
<

v

2.5

1. 044
180. 0

0. 959

COORDINATES

SR R NI
%
*%

-1
| erd
- Th
[

pa
w

e IR SR
. -
t

10

5.0

. 091

180. 0

09%‘

PROBLIM  Coneluded

_ an
L)
N, deg
| 15 20) | 25
1. 226 1. 326 [ 441
1333 | 1447 | 1583
1. 465 1. 398 1. 758
1. 622 1. 779 1. 971
1. 807 096 | 2233
L2027 2,262 2. 561
2295 2. 592 2. UR0)
L2626 1 3013 | 30537
C 3040 1 387 1312
|3 608 1348 5. 170
LRG| BB06 | T39I
5546 1 T A29
7. 469
| |
‘ ‘ | 7. 632
‘ |T.654 0 BUTHB
o7 5. 7HY 1,620
5 L4616 | 3860
1.6 C30849 33103
o3 3,287 2849
P 2. R7Y 2 573
2, 2. 551 2310
2 208G | 2 092
2 2 065 11907
2. PO RTY 174
| CoLT20 bl
1.6 | 1. 580 1. 180
CoL 1. 457 1. 380
(Y CoLBAT | 282
1. P 248 1 1193
oL 1. 159 RN
I L0761 1,036
1. 1LO00 | L u66
920 . 900
. 863 838

AND py, OF NEUTRAL POINTS

FOR VARIOUS A,

PROBLEM
A, deg
s ‘ 20 | 25
7.5 1 100 | 125
LMo Luml 1246
U 180.0 | 180.0 | I80.0
0. 891 | 0. 863 0. 838

30

577
T4
952
210
535
032
506
280
136
356

LT Sy

. 296
FE Y
616
864
322
913

—_— e R R R e
. Ve 5

30 !
15.0

1. 303
180. 0

0. 817 ‘

33 | 10
1740 | 1,937
RN 2. 183
2 104 2498
2 504 | 2 908
2927 3456
3479 1,225
1250 1 5377
5404 | 7293
783

|

| 7480
7515 5. 671
5710 4581
1603 1 384
3. 860 3322
3,326 ‘ 2. 024
2. 024 2 611
2. 603 2. 357
20346 | 2147
D133 1L 970
. asd 1. 817
L7098 | 1684
1663 11,567
LBEE a6
1437 | 1368
1,342 1. 282
[ 254 1. 203
1175 | 113l
1101 1. 063
1033 | 1000

SO6Y 94

Go8 | . 885

U851 L83

LTUT T80

35 L 10
_ } _
17.5 | 200
1364 0 1428
180. 0 | 180. 0
0. 797

|
|
|

0. 780

THE SOLAR CORPUSCULAR STREAM

ISPy S S

—_‘:_‘—_—_—_—'—:_"—_l\;l;l\;!“;;l‘;:ﬁ:-"‘;"‘l

6 AND p OF BOUNDARY FOR VARIOUS A, TWO-DIMENSIONAL

100
622
550
831
313
921
613
364
157 |
083
833
702 |

. BRY
CA84
EET T

307
224
158

092
L0300

.97
916
. 86t
L8
L TGS

TWO-DIMENSIONAL

15

22. 5

1. 497 3

180. 0 ‘

0. 765
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TABLE VI COORDINATES ¢ AND r/(1.0784) OF THE BOUNDARY OF THE HOLLOW FOR VARIOUS
A EXACT SOLUTION FOR TWO-DIMENSIONAL PROBLIM

kg
¥ 79
A, deg
8, deg
| 0 B} 10 15 i 20 25 30 35 | 40 i 45

0 (993 1. 056 1. 127 1. 210 L. 304 1415 1. 545 1. 694 1. 885 2. 113

H ; . U30 1. 004 1. 067 1. 138 1. 221 1. 316 1. 428 1. 554 1. 716 1. 904
10 CU43 . Y86 1. 036 1. 096 o L166 l. 247 1. 342 I.454 . 1. 586 1. 744
15 9560 0 L 9u2 1. 034 1.O82 | 1. 139 1. 206 1. 286 1.380 | 1.491 1. 624
20 . 965 . 999 1. 037 LO8I ' 1,131 1. 188 1. 255 1. 334 1. 427 | 1. 538
25 L0972 1. 003 1. 038 1. 078 1. 123 1175 . 1.235 1, 305 138G 1 1.47Y9
30 . 478 1. 006 1. 038 1074 1. 115 1162 . 1. 216 1. 278 1350 ¢ 1433
35 . 983 1. 008 1. 037 1. 064 I 107 149 @ 1,198 i L 253 L3171 391
40 | . 986 LOooy | 1.035 1. 064 1. QU8 1. 136 L8011 | 1,230 1. 287 1. 353
45 : . 989 I. 010 1. 033 1. 059 1. 090 1. 124 164 | 1.208 1. 259 1. 318
50 L 992 1. 010 1. 030 1.054 | 1. 081 112 1. 148 | 1. 188 1. 234 . 286
55 | . 994 1. 010 I 028 LO49 1073 1. 1 1. 132 1. 169 1. 210 1. 256
60 . 996 1. 009 1. 025 1. 043 1. 065 1. 090 L1118 + 1.150 1. 187 1. 229
65 997 1. 008 1. 022 1. 038 1. 057 1079 .10+ 1.132 1. 165 1. 203
70 ; L O68 1. 007 1. 019 1. 032 1. 49 1. 068 1. 090 L6 1. 145 1. 178
T 9949 1. 006 1. 015 1. 027 1. 041 1. 057 LO7T7 | 1099 1. 125 1. 154
80 1. 000 1. 005 1. 012 1021 1.033 . 047 1. 064 1. 083 1. 106 1. 132
85 1. 000 1. 003 1. 008 LOI5 | 1.025 1. 036 [. 051 1. 068 1. 087 1. 110
) 1. OO0 1. 001 I 004 1. 009 1. 017 1. 026 1. 038 1. 052 1. 069 1. 084
05 1. 000 . 9499 1. 000G 1. 003 I. 008 1. OI6 1. 025 1. 037 1. 052 1. 069
100 i. 000 L9097 L9496 RN 1. 000 1. 005 1. 013 1. 022 1. 034 1. 049
105 . 999 L 994 L 991 U600 | 492 995 1. 000 1. 007 1. 017 1. 029
110 RIS L 991 . U866 . UR4 U833 L U84 . ORT . 993 1. 000 1. 010
L L Y97 . UR8 CO8L 97T L U74 L 973 L9741 L 078 . 983 . 990
120 L9946 U85 L0976 L9649 | . 965 . 962 . 961 L0963 . 966 CO71
125 L 094 981 870 C961 L9585 . 950 L O48 IR PR . 948 L Y52
130 ' . 992 LOTT L b64 . 053 RIS . 938 . 934 . 931 931 . 932
135 . URY L0972 sy RRIE S . 034 . 926 . 920 915 L9130 L ul2
140 . 986 . 967 . 950 L 935 L9253 913 905 L 898 . 804 . 802
145 . U83 Y IS VO L9925 Ut . &Y . 889 . 881 . 875 . 871
150 L 978 954 L9432 L9160 | . 897 . 884 . 872 . 862 . 855 . 840
155 ; 972 945 . 922 . Y01 L8833 i . 854 . 843 L8330 . X206
160 ; L 965 . 936 910 . 887 . 867 L 849 . 834 . 821 . 810 . 8ul
165 ! . 956 L U224 . 895 . 870 | . 848 . R249 . 812 L TUR LT85 L 775
170 943 L B07 . 876 . 850 . 826 . 805 . TRT YTl Y . 745
175 : L9350 903 . 862 . 827 . TU8 e . 7H3 L 737 . 722 . 709
180 L9930 RIEL] . 889 L8160 . 808 L TT4 L TH v

694673
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TABLIE VIL - COORDINATES § AND »/(1.0784) OF THE BOUNDARY OF THE HOLLOW FOR VARIOUS
A, EXACT SOLUTION FOR TWO-DIMENSIONAL PROBLEM-—Concluded

T
; ¥ 2 }
A, deg
8, deg .
0 5 10 15 20 25 | 30 35 ! 40 ‘ 45
T T e B N ) i T
(} | 0.993 i I. 056 1. 127 1. 210 | 1. 304 1. 415 1. 545 1609 | 1. 885 TR
5 [ 1.063 1. 133 1. 214 1.307 1415 ‘ 1. 543 1. 695 1. 878 2,103 2. 383
10 1 1. 153 1. 231 1. 322 . 428 1.554 | 1.703 1. 883 2. 104 2. 380 2. 725
I 1 1.239 1. 348 1.452 | 1. 575 1. 721 1. 849 2. 116 2. 388 2,725 3,192
20 1. 382 1. 483 1. 604 ‘ 1. 749 1. 923 2. 138 2. 407 2. 737 3. 205 3. 978
25 1. 521 1. 64¢ 1.783 L 96 - 2169 2 435 2. 760 3,232 4. 006 5. 258
30 1. 681 1. 823 1. 995 2. 207 2. 472 2. 742 3.271 4. 049 5. 296 7. 207
35 1. 867 ; 2. 038 2. 249 2. 515 ' 2 833 3. 320 4,107 5. 353 7. 247
40 2. 085 2. 206 2. 554 2. 881 i 3370 0 4177 5. 425 7. 305
45 L2345 2. 605 2. 934 3446 | 4257 1 5.511 7. 380 |
50 2,654 | 2,992 3. 518 1344 1 5606 | 7168 !
55 3.052 ¢ 3594 4, 436 5 700 - 7.567 i |
60 3.672 ¢ 4,532 5 816 | 7.672 } . 8. 685
65 1627 | 5926 | 7783 | | 8656 | 0. 664
70 6,034 | 7. 805 i | 8 613 6. 643 | 5 188
b 8 006 | 8. 555 6. 607 5. 170 4 155
80 | 8 486 6. 556 5. 138 4. 137 3. 465
85 8 405 1 6,493 5. 093 4. 108 3446 0 3018
a0 8 315 6 418 5. 037 | 4. 068 3417 2,997 | 2.708
! 95 8 217 6, 332 1. 970 4. 018 3381 2. 968 2. 685 2. 134
i 100 ; 8 113 6,238 | 4 893 3. 960 30337 0 2,034 2 657 2. 415 2. 216
| 105 ; 8 006 | 6. 138 i 4. 8OY l 3. 8Y4 3. 287 2 844 2. 622 2. 386 2 191 2. 028
i 110 ! 6034 | 4720 0 3824 3,232 2. 851 2. 584 2. 352 2. 161 2.001 | 1 866
115 L4627 3,748 1 3174 0 2804 2. 541 2313 2126 ¢ L 970 1.838 ' 1.725
120 3. 672 3113 | 2 754 2. 494 2. 271 2. O88 1. 936 1 1. BU6 1,695 | 1. 600
125 3. 052 2 704 2. 446 2. 227 2. 047 1. 897 1.771 1 L 663 1. 569 1. 488
130 2. 651 2. 395 2, 180 2. 003 1. 856 1. 732 1. 626 1. 535 1. 456 | 1. 387
135 2. 345 - 2132 1. 958 1. 813 1. 641 1. 587 1. 4498 1. 421 1. 354 1. 295
140 2. 085 f 1. 912 1. 769 1. 648 I, 546 1. 459 1.383 . 1.318 1. 260 1. 210
145 1. 867 1724 ¢ L6005 | 1504 I 418 1. 344 1.279 | 1.223 1174 L1331
150 1. 681 1.562 | 1462 ‘ 1. 376 . 302 1. 239 1. 184 ‘ 1. 135 1.093 | 1. 056
155 POLA21 ) 1,420 0 10334 1. 261 1. 198 1143 } 1. 095 1. 054 1. 017 . 985
160 ‘ 1. 382 1.295 | 1. 221 1. 157 1. 102 1. 054 1. 013 077 . 945 | . 918
165 b 259 1. 184 1. 118 1. 062 1. 014 L 971 . 935 . 903 L 876 . 852
170 1. 153 1. 086 1027 i L0933 C8Y5 . 862 ‘ . 833 . 809 . 788
175 1. 063 1. 002 L0490 . 002 L 861 L8260 L7995 | L7608 i i) . 726
180 L0993 . 938 . 880 846 . 808 774 . 744 ‘ LTILT . 694 L 673 ‘
| | | |

TABLE VIII. COORDINATES y AND ry/(1.0784) OF NEUTRAL POINTS FOR VARIOUS A, EXACT SOLU-
TION FOR TWO-DIMENSIONAL PROBLEM

i A, deg
|
o5 10 15 20 25 30 0 35 40| t5
i B ] o ‘ | ‘
' { | : ‘
Oy deg |11 0B 12, 42 13. 81 ! 15. 24 ‘ 16. 68 1 18.12 | 19. 55 ‘ 20, 97 22, 34 2365
. 00945 L98TH LOB3 . LOS2 LI36 . L194 L2657 | 1,328 . L 106 1493

' 4
Bny, deg | 168 94
| Py, 0. 945

{

I
170.25 | 17150 172,69 173.80 17483 ‘ 175,77 | 176,62 ‘ 177,36 | 178,01

0. 906 0. 870 | 0. 836 0. 804 | 0. 775 ‘ 0. 748 0. 723 | 0. 700 1 ). 680
\ P \
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